Booster Collimators

Todd Sullivan

Bill Pellico

Proton Source - Booster

Fermilab

March 30, 2005

Outline

- History of Collimators
- Hardware Overview
- Operational Experience
- IPM and TBT Data
- BLM Data

History

- Collimator Design Paper:
 - "Commissioning of the Beam Collimation System at the Fermilab Booster." Drozhdin, Kasper, Lackey, Mokhov, Prebys, Syphers
- Motion control hardware AD Controls Dept
- ACNET Application program Dean Still
- Installed October Shutdown 2003
- Commissioned spring of 2004
- Operational since April 2004

Booster Tunnel Map

B:S5PCH - upstream mini-straight of Period 5

B:S5PCV - downstream mini-straight of Period 5

6A - upstream end of Long 6

6B - downstream end of Long 6

7A – upstream end of Long 7

Hardware Overview

Tunnel Hardware: Two copper primary foils and three 12 ton secondary collimators

- Horizontal primary located at upstream period 5 mini straight. Vertical primary located at downstream period 5 mini straight.
- 2. Two secondary collimators at Long 6
- 3. One secondary collimator is located at Long 7
 - A small collector downstream of Long 7
 Collimator

Primary Collimators

- Initial design used a 12 mils carbon for primary foil.
- A 15 mils copper foil was added to the carbon for higher energy collimation testing.
- Presently we run using only the 15 mils copper foil.
- Both primaries are attached to wire scanner assemblies for motion control.
- Produce an out-scattering of particles when intercepting beam halo.

Primary Collimator

Secondary Collimators

Collimator Scan

Effects of Collimators on Ring Losses

IPM DATA - Beam Width

Horizontal

Vertical

IPM Profiles Fit to a Gaussian+Linear Function

$$G \equiv \int (Gaussian \ term)$$
$$L \equiv \int (Linear \ term)$$

L/G measures non-Gaussian tails (halo)

We collected IPM data for many cycles with and without the collimators.

Average L/G for the last 500 turns in Booster cycle.

L/G without collimators is significantly larger than L/G with collimators.

J. Amundson, P. Spentzouris, CD/CEPA

Vertical TBT at L6

Maximum Protons/hr Limit

Booster RF Activation Data

Conclusion

 Collimators have significantly reduced losses in areas of concern allowing an increase in the maximum extracted protons/hr.